首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52534篇
  免费   3880篇
  国内免费   31篇
  2023年   199篇
  2022年   170篇
  2021年   1064篇
  2020年   658篇
  2019年   818篇
  2018年   1187篇
  2017年   1052篇
  2016年   1676篇
  2015年   2612篇
  2014年   2963篇
  2013年   3352篇
  2012年   4398篇
  2011年   4177篇
  2010年   2653篇
  2009年   2385篇
  2008年   3322篇
  2007年   3218篇
  2006年   2804篇
  2005年   2619篇
  2004年   2353篇
  2003年   2041篇
  2002年   1822篇
  2001年   1442篇
  2000年   1418篇
  1999年   1116篇
  1998年   443篇
  1997年   364篇
  1996年   257篇
  1995年   255篇
  1994年   241篇
  1993年   204篇
  1992年   393篇
  1991年   352篇
  1990年   324篇
  1989年   284篇
  1988年   217篇
  1987年   196篇
  1986年   172篇
  1985年   149篇
  1984年   102篇
  1983年   105篇
  1982年   76篇
  1981年   70篇
  1980年   62篇
  1979年   84篇
  1978年   63篇
  1977年   62篇
  1976年   51篇
  1975年   47篇
  1974年   70篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
A rat adult skeletal muscle probe (Asm15) originated from a rhabdomyosarcoma was used to isolate the human homologous sequence from a placenta cDNA library. Among several positive clones the longest EcoRI-EcoRI insert (ASM1) obtained was 1875 bp long with 72% homology with rat Asm15 cDNA sequence. Important variations of ASM1 RNA level were observed in different adult skeletal muscles. Expression of a 29kD ASM1 protein was demonstrated in human adult skeletal muscle lysates using an antiserum (PB1579) raised against the C terminal region of the rat Asm15 protein. The human ASM gene was assigned by somatic cell analysis with human (ASM1) and rat (Asm15) probes to chromosome 11, and by in situ hybridization with the human probe to 11p15, a chromosome region involved in human embryonal rhabdomyosarcomas. Except for the presence of a HindII restriction site, the results obtained for the restriction map and the sequence of ASM1 cDNA (data not shown) exhibited extensive homology with the human H19 DNA sequence which have been mapped with a mouse probe also in 11p15. This suggests that ASM/Asm and H19 may represent the same sequence (in this hypothesis the presence of the supplementary HindII site in our ASM1 probe is explained by polymorphic variability). However it was reported that human and mouse H19 mRNA did not encode for a protein but acted as an RNA molecule whereas in our present study ASM protein was detected in human adult skeletal muscle. This could be explained by important regulation of ASM protein expression during development and cell differentiation. However we cannot exclude for the different species studied (mouse, rat, and man) the hypothesis that H19 and ASM/Asm mRNA may represent two distinct messengers from the same gene or even from duplicated genes.  相似文献   
42.
43.
44.
45.
Changsung Kim 《BMB reports》2015,48(5):256-265
Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]  相似文献   
46.
47.
Squalene is a lipophilic and non-volatile triterpene with many industrial applications for food, pharmaceuticals, and cosmetics. Metabolic engineering focused on optimization of the production pathway suffer from little success in improving titers because of a limited space of the cell membrane accommodating the lipophilic product. Extension of cell membrane would be a promising approach to overcome the storage limitation for successful production of squalene. In this study, Escherichia coli was engineered for squalene production by overexpression of some membrane proteins. The highest production of 612 mg/L was observed in the engineered E. coli with overexpression of Tsr, a serine chemoreceptor protein, which induced invagination of inner membrane to form multilayered structure. It was also observed an increase in unsaturated fatty acid in membrane lipids composition, suggesting cellular response to maintain membrane fluidity against squalene accumulation in the engineered strain. This study potentiates the capability of E. coli for squalene production and provides an effective strategy for the enhanced production of such compounds.  相似文献   
48.
88 rice and 75 soybean samples were collected from 8 provinces of Korea from March through September in 1988. The Fusarium mycotoxins, zearalenone was analyzed by direct competitive enzyme linked immunosorbent assay. 10.2% of rice and 9.3 % of soybean samples contained detectable zearalenone. The average levels of zearalenone of rice and soybean samples were 11.78μg/kg and 7.70μ/kg, respectively.  相似文献   
49.
We have previously reported that in vitro HCV infection of cells of hepatocyte origin attenuates complement system at multiple steps, and attenuation also occurs in chronically HCV infected liver, irrespective of the disease stage. However, none of these regulations alone completely impaired complement pathways. Modulation of the upstream proteins involved in proteolytic processing of the complement cascade prior to convertase formation is critical in promoting the function of the complement system in response to infection. Here, we examined the regulation of C2 complement expression in hepatoma cells infected in vitro with cell culture grown virus, and validated our observations using randomly selected chronically HCV infected patient liver biopsy specimens. C2 mRNA expression was significantly inhibited, and classical C3 convertase (C4b2a) decreased. In separate experiments for C3 convertase function, C3b deposition onto bacterial membrane was reduced using HCV infected patient sera as compared to uninfected control, suggesting impaired C3 convertase. Further, iC3b level, a proteolytically inactive form of C3b, was lower in HCV infected patient sera, reflecting impairment of both C3 convertase and Factor I activity. The expression level of Factor I was significantly reduced in HCV infected liver biopsy specimens, while Factor H level remained unchanged or enhanced. Together, these results suggested that inhibition of C3 convertase activity is an additional cumulative effect for attenuation of complement system adopted by HCV for weakening innate immune response.  相似文献   
50.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号